为此,让我们看一下蛋白质和核酸,然后问我们自己,是什么使蛋白质和核酸对生命而言如此的重要? 好的,蛋白质和核酸都是巨分子结构,能够在结构上带来几乎是无穷无尽的变化,因而具备了功能广泛这一潜在的能力,而后者作为基础,是任何一种几乎是无穷无尽变化着的生命所必需的。 有没有另一种分子结构,能够像蛋白质和核酸一样,变得很大很复杂,而且还是非极性的,因而能够溶于甲烷?最普通的跟生命相关的非极性化合物就是类脂化合物,因此我们不禁会问,类脂化合物能否以巨分子的结构存在? 如此巨大的类脂化合物分子不仅可能,而且真实存在。特别地,脑组织中就含有复杂结构(以及未知功能)的巨型类脂化合物分子。到处都存在着所谓的“类脂化合物蛋白”和“蛋白类脂化合物”,它们都是由一部分的蛋白质和一部分的类脂化合物组成的单个巨大分子。人类只是了解了类脂化合物化学的一点皮毛。直到近几十年,我们才发现,非极性分子的潜能要比我们所知道的更大。 同时也记住,地球生命的生物化学的进化过程始终是围绕着水这种极性媒介所展开的。为中心的。假设生命在比如甲烷这样一种非极性媒介中进化,同样的进化力量将使脂类分子通过不断的增殖,成为复杂的、微妙而又易变的结构,进而能够完成通常与蛋白质和核酸相关联的那些功能。 继续从温度方面加以讨论,我们会遇到少数的几个常见的在低于液态甲烷温度下仍呈液态的物质。它们是氢、氦和氖。同样地,去掉氦和氖,这样我们就只剩下氢,这个在宇宙中最常见的物质。(有些天文学家认为木星的五分之四是由氢组成的,其它的大部分是氦。在这里就要跟氨的海洋说再见了。) 氢在-253° C (-423° F.) 和 -259° C (-434° F.) 之间将成为液体,在真空环境中,超过-240° C. (-400° F.) 氢就会沸腾气化。这个区间只比绝对零度高20到30摄氏度,因此由氢所构成的这一舞台背景,也许是为着最寒冷的生命准备的。氢是非极性的,因此同样地,它需要某种脂类来充当舞台上的角色。 到目前为止,所有的讨论都集中在那些比地球更冷的行星上。那么那些比地球更热的行星呢? 作为开始,我们必须认识到在行星中所存在的严格的化学区隔。在太阳系里,或者姑且推而广之到整个宇宙,有三种形式的行星。 在寒冷的行星上,分子的运行比较缓慢,甚至连氢和氦(在各种物质中最轻的因此也是最灵活的)也运动得足够缓慢,以至于在行星的形成过程中被保留在一起。氢和氦在一起形成了我们所熟知的那些巨大的气态行星,如木星、土星、天王星、海王星。 在较热的行星上,氢和氦运动快速且容易逃逸。更复杂的原子,作为氢和氦的海洋里仅有的杂质,能够形成那些小的行星。其后的主要氢化物是水。水不仅有甲烷-氨-水三者中最高的沸点,而且也是最容易和硅酸盐形成紧致的复合物,从而形成行星那坚硬的外壳。 这样就形成了象火星、地球和金星这样的行星。在这里,是不可能有以氨和甲烷为舞台背景的生命形式。首先,温度高得足以让这些物质气化。其次,即使这些行星上在形成之后曾经经历过一个长期的超级冰河期,期间的温度降到足以液化氨或甲烷,这仍不足道。因为那里没有足够大量的液氨和液态甲烷来支持一个遍及世界的生命形式。 想象一下,一个比上述的那三颗行星更热的世界,一个热得足以连水都蒸发掉了的世界。这个熟悉的例子就是水星。这是一个由坚硬的岩石组成的,这些岩石如果有的话,也只会含有少量的氢或氢化物。 难道这就能让我们排除可能具有的生命形式了吗? 未必。 存在某些非氢化合物,能比水在更高的温度下保持液态。在宇宙范围内,其中的一种最常见化合物能在 113° C (235° F) 到445° C (833° F) 温度之间仍保持液态,而这将非常切合火星向阳面的温度。 然而,对于这样一种生命的舞台背景,这舞台上的角色又会是什么样的呢? 到目前为止,所有我们考虑过的那些复杂分子结构都是些普通的有机分子,巨分子,它们主要是由碳和氢所构成的,并掺杂了较多的氧和氮,和较少的硫和磷。单纯的碳和氢只会构成非极性分子,而氧和氮的加入则能增加分子的极性数量。 在以液态水为舞台背景的世界里,在生物机体组织的成分当中,氧原子的数量当超过氮原子的数量,地球就是一例。而在以液态氨为舞台背景的世界里,我估计氮原子的数量将明显超过氧原子。根据所含的氧原子和氮原子数量的多寡,可以用来区隔不同亚种的蛋白质和核酸分子。 而在以液态甲烷和液态氢为舞台背景的世界里,类脂化合物的成分里缺乏氧和氮,而主要是碳和氢,这就是为什么类脂化合物是非极性化合物的理由了。 但是,在一个如水星般炎热的世界里,所有这些化合物都不存在。没有哪种有机化合物,除非一些非常简单的,能够长时间耐受液态硫磺的温度。事实上,地球上的蛋白质在60° C的温度下只能坚持几分钟,再长就无法存活。 那如何确定有机化合物呢?首先的想法,或许是可不可以用其它元素来替代氢原子,因为在这样炎特的世界里,氢将极度缺乏。 让我们来观察一下氢原子。由于它是所有原子中最小的,因此它可以挤进分子结构里其它原子无法进入的地方。任何碳链,无论多么复杂,都能够在其周遭附着上氢原子,使其成为碳氢化合物,也就是烃类。如果用其它原子,就会显得太大了。 那哪一个能作为替代氢原子呢?好的,一种和氢原子的化学属性相近(至少就参与特定分子的结合的能力而言)而且和氢原子一样小的原子就是氟。不幸的是,氟太活跃了以至于化学家们总是觉得它难以对付,因此自然而然地会去研究更加驯服的原子种类。 这在二战期间得到了改变。那时,六氟化铀是唯一能让铀变成一种容易气化的化合物。正是因为对铀的研究所需(原因你懂的),氟才受到重视,不管是否情愿。 结果,得到了一整组的“碳氟化合物”,它是由碳和氟,而非碳和氢,构成的复杂分子,也是氟基有机化学的基础。 诚然,碳氟化合物比对应的碳氢化合物要不活跃得多(事实上,它们在工业上的用途正是在于它们的这种不活跃),并且它们似乎最不能适应构成生命所必需具备的灵活性和多样性。 然而,发展至今的碳氟化合物,可以和氢基有机物中的聚乙烯和聚苯乙烯相类比。如果我打算只从聚乙烯来判定氨基有机物的潜力的话,那我真怀疑我们能否很容易地来设想蛋白质的潜力。 据我所知,还没有人做过氟化蛋白的研究,或者甚至还没有人想过要去研究它。但是,为什么不呢?我们可以非常确信,氟化蛋白在常温环境下应该不会比普通的蛋白质来得活跃。但是在象水星这样的星球上,那里会非常热,会将氢基有机物完全破坏,而氟基有机物却有可能变得恰好足够活跃,以至于可以来支持生命,特别是由那些生命形成的氟基有机物。 那些以硫为介质的碳氟化合物生物所依赖的,当然是基于这样的假设,那就是在那些炎热的行星上,氟、碳和硫的数量足以支持让生命在数亿年里形成所需的随机化学反应。这些元素在宇宙中比较常见,所以上述假设并不是天方夜谭。但是,为了保险起见,让我们考虑其它可能的选择。 假设我们不用碳作为构成生命的巨分子的主要成分,有没有和碳的独特属性相近的元素— 能够构成长链和长环—从而使能够用来表达生命多样性的巨分子结构得以存在呢? 在这方面离碳最接近的原子是硼和硅,硼在元素周期表中位于碳的左边,而硅则位于碳的正下方。然而,这两个元素中,硼是相对稀少的元素。由于硼在地壳中的低聚集性,让它参与的那些产生生命的随机化学反应会非常缓慢,从而在仅有的五十忆年当中,产生以硼为基础的生命的概率几乎不存在。 那就只剩下硅了。不过至少,我们有充分的事实依据的。水星,或者其它的炎热的行星,可能缺乏碳、氢和氟,但它一定富含硅和氧,因为这是岩石的主要成分。一个一开始就缺乏硅和氧的炎热的行星将无法存在,因为它将不会比那些散布着的镍-铁陨石有更大的质量。 硅可以形成同碳链相类似的化合物。氢原子可以链接硅链,而非碳链,从而形成硅烷。不幸的是,硅烷会比其对应的碳氢化合物更来得不稳定,并且在不太可能在高温下存在于一个形成生命所需的复杂分子结构当中。 诚然,硅确实能够在岩石中形成复杂的长链,并且这样的长链能够轻易耐受高热。然而,我们这里讨论的不是那种只链接硅原子的硅长链(Si-Si-Si-Si-Si),而是那种部分硅原子被氧原子所取代的硅长链(Si-O-Si-O-Si)。 每一个硅原子链接四个氧原子,因而你须将它们想象成这些氧原子每个都和它上面的和下面的硅原子相链接,同时,它也和周围的硅原子相链接。这样就构成一个三维立体的网络结构,因而它是非常稳定的。 然而以这种硅氧链为基础, 当它链接的另外两个原子不是氧原子而是碳原子会怎样呢?当然这种情况下,碳原子还可进一步链接氢原子。这种杂交分子,无论是硅基的,还是以碳基的,都被称作硅酮。这些化合物同样也是主要在二战时期开发出来的,从它们诞生之日起,它们就以极强的稳定性和不活泼性而引人注目。 同样地,在具备更大的复杂度和高温的条件下,硅酮将展示其形成生命所需的活跃性和多样性。另一种可能性:也许存在某种硅酮,它们含有通过氟原子,而非氢原子链接的碳链。我们可以叫它氟化硅酮(Fluorosilicones),虽然,据我所知 — 很可能我是错的 — 目前还没有对它的相关研究。 硅酮或氟化硅酮,可不可能这种化合物的简单结构(在高温环境下保持为液体状态)形成了生命的舞台背景,而其复杂结构则形成了这舞台上的主要角色呢? |